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This study formulates numerical and analytical approaches to the self-equilibrium problem
of novel units of tensegrity metamaterials composed of class θ =1 tensegrity prisms.
The freestanding configurations of the examined structures are determined for varying
geometries, and it is shown that such configurations exhibit a large number of infinitesimal
mechanisms. The latter can be effectively stabilized by applying self-equilibrated systems
of internal forces induced by cable prestretching. The equilibrium equations of class θ =1
tensegrity prisms are studied for varying values of two aspect parameters, and local
solutions to the self-equilibrium problem are determined by recourse to Newton–Raphson
iterations. Such a numerical approach to the form-finding problem can be easily general-
ized to arbitrary tensegrity systems. An analytical approach is also proposed for the class
θ =1 units analyzed in the present work. The potential of such structures for development
of novel mechanical metamaterials is discussed, in the light of recent findings concerned
with structural lattices alternating lumped masses and tensegrity units.

Keywords: lattice metamaterials, class θθθ tensegrity prisms, self-stress, prestress stabilization, freestanding
configurations

1. INTRODUCTION

Recent research in the area of mechanical metamaterials has revealed several distinctive features of
lattice materials formed by tensegrity units and lumped masses, which originate from the peculiar,
nonlinearmechanical response of such units. Ordinary engineeringmaterials typically exhibit either
elastic stiffening (e.g., crystalline solids) or elastic softening (e.g., foams). More puzzling is the
geometrically nonlinear response of structural lattices based on tensegrity units (e.g., tensegrity
prisms), which may gradually change their elastic response from stiffening to softening through the
modification of mechanical, geometrical, and prestress variables (tensegrity metamaterials (Skelton
and de Oliveira, 2010; Fraternali et al., 2012, 2014, 2015a; Amendola et al., 2014; Davini et al.,
2016; Rimoli and Pal, 2017)). Tensegrity structures are prestressable truss structures, which are
obtained by connecting compressive members (bars or struts) through the use of pre-stretched
tensile elements (cables or strings). Several studies have shown that it is possible to modulate the
properties of tensegrity units by playing with local (or internal) and global (or external) prestress
variables, so as to match arbitrary, user-defined nonlinear constitutive laws at the mesoscale, such
as, e.g., power-law responses with arbitrary exponents (refer, e.g., to Skelton and de Oliveira (2010);
Fraternali et al. (2012, 2014, 2015a); Amendola et al. (2014); Davini et al. (2016); Rimoli and Pal
(2017) and references therein). For what concerns the wave dynamics of tensegrity metamaterials,
it has been shown that elastically hardening systems support compressive solitary waves and the
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unusual reflection of waves onmaterial interfaces (Fraternali et al.,
2012; Davini et al., 2016), while elastically softening systems sup-
port the propagation of rarefaction solitary waves under initially
compressive impact loading (Amendola et al., 2014; Fraternali
et al., 2014, 2015a). Solitary wave dynamics has been proven
to be useful for the construction of a variety of novel acous-
tic devices. These include effective impact mitigation systems
based on tensegrity metamaterials with softening-type response,
which are able to transform compressive disturbances into soli-
tary rarefaction waves with progressively vanishing oscillatory
tail (Herbold and Nesterenko, 2013; Fraternali et al., 2015a), as
well as tunable focus acoustic lenses, which are based on systems
featuring elastically stiffening response and compression solitary
wave dynamics (Spadoni and Daraio, 2010; Fraternali et al., 2012;
Theocharis et al., 2013; Donahue et al., 2014).

The tensegrity metamaterials studied in Fraternali et al. (2012,
2014, 2015a) and Amendola et al. (2014) make use of tensegrity
prisms (or T-prisms) acting as nonlinear springs that connect
disks (or plates) providing supplementary stiffness and lumped
masses. The present work studies a new type of tensegrity unit
consisting of the so-called class θ = 1 tensegrity prism (Bieniek,
2017a,b). The class θ tensegrity systems are formed by two dif-
ferent sets of strings, one of which connects the external nodes
of the structure (i.e., the boundary nodes), while the other one
connects a group of internal nodes (refer, e.g., to Ref. (Bieniek,
2017a) and references therein for an extensive description of such
systems). Even if the original nomenclature relative to these struc-
tures makes use of the capital letter Θ, whose symbol graphically
illustrates the concept of a structure endowedwith outer and inner
cables, the present work relaxes such a notation through the use
of the lower-case symbol θ. Class θ = 1 systems exhibit only one
compressive member (or bar) attached to the generic node of the
structure, and provide a special subset of the class k= 1 tensegrity
systems introduced in Skelton and de Oliveira (2010). Class θ > 1
systems instead feature amaximumnumber of bars attached to the
nodes of the structure that is greater than one (Bieniek, 2017a).

A primary goal of this work is the study the existence of self-
equilibrium configurations of class θ = 1 tensegrity prisms for
varying values of two aspect parameters, which characterize the
twisting angle between the terminal bases, and the coplanarity
of the inner nodes (cf. Sect. 2). Self-equilibrium placements are
configurations in which the structure is in equilibrium under 0
external forces and non-zero (self-balanced) internal forces. Dis-
placement fields from such configurations that do not change the
lengths of allmembers, according to the small deformation theory,
are hereafter named infinitesimal mechanisms. The equilibrium
equations of the examined structure are studied for arbitrary
values of the design parameters within suitable search intervals,
with the aim of finding freestanding configurations in absence of
external loads (cf. Sect. 3). Local solutions of the self-equilibrium
problemare numerically obtained throughNewton–Raphson iter-
ations. Sect. 4 presents an alternative, analytical approach to the
form-finding problem, by inspecting the equilibrium equations
of selected nodes. The internal mechanisms of the self-stressed
configuration and their stabilization through prestress forces are
illustrated in Sect. 5. Concluding remarks and a discussion about
potential uses of the examined unit for the construction of novel
tensegrity metamaterials are given in Sect. 6.

2. GEOMETRY OF A CLASS θθθ ===1
TENSEGRITY PRISM

Let us consider the class θ = 1 triangular tensegrity prisms shown
in Figure 1. Such systems consist of a network of nn = 12 nodes,
nb = 6 compressed members (bars) with equal length b, and
ns = 15 tensile members (cables) of different lengths. The cable
elements include: two sets of horizontal cables labeled 1–2–3 and
4–5–6 in Figure 1 with equal length ℓ; one set of inner cables
7–8–9–10–11–12 with equal length c; and three cross cables 1–4,
2–5, 3–6with equal length v. The bars are labeled 1–10, 2–11, 3–12
(top bars) and 7–4, 8–5, 9–6 (bottom bars) in Figure 1. The color
code used in Figure 1 employs red and blue lines to mark the top
and bottom cables, respectively; green lines for the inner cables;
black lines for the cross cables; and brown-colored tubes for the
bars.

With the aim of comparing the results of this study with those
available in Bieniek (2017a,b), our next developments will exam-
ine the two configurations depicted in Figure 1, which correspond
l= v= 100, c= 50 (standard configuration or System 1) and
l= v= c= 100 (expanded configuration or System 2) in arbitrary
units. Such systemswill be studied for varying values of two aspect
angles α and β. The first angle α describes the geometry of the
system in the top view and measures the twisting angle that the
top and bottom bases form with respect to each other (Figure 2).
Following Bieniek (2017a,b), we let such an angle range between
the two extreme values α= 0° (bases parallel to each other) and
α= 60° (top and bottom bars touching each other, cf. Figure 3).
The second angle β describes the geometry in the front view
and is related to the slope of the internal strings with respect to
the horizontal plane (Figure 2). We let β range between β = 0°

FIGURE 1 | Reference configurations of class θ = 1 tensegrity prisms for
α= 30°, β = 45° and different values of the member lengths (arbitrary units).
Here and in what follows, red, blue, green, and black lines, respectively, mark
top, bottom, inner, and cross cables, while brown tubes mark the bars. (A)
System 1: axonometric (left) and top (right) views of the standard configuration
corresponding to l= v= 100, c=50. (B) System 2: axonometric (left) and top
(right) views of the expanded configuration corresponding to l= v= c= 100.
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FIGURE 2 | Illustration of the aspect angles α and β.

(coplanar inner nodes), and β = 90° (inner nodes collapsing on
two single nodes, cf. Figure 4) (Bieniek, 2017a,b).

By introducing a Cartesian reference frame with the origin at
the centroid of the prism, and letting the superscript T denote the
transpose of a matrix or vector, the vectors collecting the node
coordinates can be expressed in terms of the aspect parameters ℓ,
v, c, α, and β as follows (Bieniek, 2017a,b):
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FIGURE 3 | Limiting configurations corresponding to α= 0° (A) and
α= 60° (B).

FIGURE 4 | Limiting configurations corresponding to β = 0° (A), and β = 90°
(B).

n7 =
[
−

√
3c
2

· cos(β),
c
2

· cos(β),
c
2

· sin(β)
]T

,

n8 =
[√

3c
2

· cos(β),
c
2

· cos(β),
c
2

· sin(β)
]T

,

n9 =
[
0, −c · cos(β),

c
2

· sin(β)
]T

, (3)

Frontiers in Materials | www.frontiersin.org February 2018 | Volume 5 | Article 53

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Modano et al. On the Self-Equilibrium of Class Theta= 1 Tensegrity Metamaterials
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Following the notation presented in Skelton and de Oliveira
(2010), we introduce the matrix of the node coordinatesN, whose
ith column is given by vector ni defined above, and let M be the
matrix of member vectors, whose kth column is given by nik −njk ,
where nik and njk are the position vectors of the nodes i and j
attached to the kth member. It is convenient to write M in the
following form:

M = [B S], (5)

where B and S are the matrices that describe bar and string
elements, respectively (Skelton and de Oliveira, 2010). The matrix
notation employed in Skelton and de Oliveira (2010) also uses the
connectivity matrix C= [CB CS]T, whose (i, j) entry is set equal to
−1 if the ith member (bar or string) vector is directed away from
the jth node, equal to 1 if it is directed toward the jth node, equal
to 0 if it does not touch the jth node. By using such a matrix, it is
straightforward to verify that one can write,

[B S] = [NCT
B NCT

S ]. (6)

3. A NUMERICAL APPROACH TO THE
SEARCH FOR FREESTANDING
CONFIGURATIONS

The state of stress acting on the structure under examination can
be characterized through the force densities acting in all themem-
bers (i.e., themembers’ forces divided by their current length).We
collect such quantities into the following matrix (Donahue et al.,
2014):

Σ =
[
−Λ 0
0 Γ

]
, (7)

where Λ and Γ are the diagonal matrices whose non-zero ele-
ments are the forces densities λi, γ i acting in the bars and strings,
respectively. Since the bars and strings are supposed to carry
compressive and tensile forces, respectively, we assume Λ≥ 0,
Γ≥ 0.We also introduce the vector of the external forcesw, which
collects all the Cartesian components of the forces acting on the
nodes of the structure. Under the above notation, the equilibrium
equations of the nodes are written as follows:

Ax = w, (8)

where
A = [−BΛ SΓ] (9)

is the equilibrium matrix of the structure, and x is the vector with
m= nb + ns entries that collects all the force densities λi and γi.

Our current goal is to formulate a numerical approach to
the search for solutions of the equilibrium problem (8) under 0
external forces (i.e., when w= 0), in correspondence with fixed

FIGURE 5 | Plots of f (α, β) normalized to the maximum value for different
search intervals. (A) α ∈ [0,60]°× β ∈ [0,90]°. (B) α∈ [24.0, 26.5]°×
β ∈ [14.0,15.5]°.

values of ℓ, v and c (cf. Figure 1), and arbitrary values of the
aspect angles α and β. Such solutions will allow us to find the
freestanding configurations of a class θ = 1 tensegrity prism for
varying geometries (form-finding problem), which we also name
prestressable configurations (Skelton and de Oliveira, 2010; Tilbert
and Pellegrino, 2011). We start by multiplying both sides of
equation (8) by the matrix AT obtaining the following equation:

ATAx = ATw, (10)

whereG = ATA is the Gramianmatrix ofA (Gentle, 2017).We
search for states of freestanding or prestressable configurations,
by looking for the 0 points of the following objective function
(Gentle, 2017):

f(α, β) = det(G). (11)

Let’s start first by examining System 1 in Figure 1, by pick-
ing l= v= 100, and c= 50. Figure 5 shows the map of f (α, β),
which was numerically obtained for such a system through
Mathematicar (Version 11), over the whole search domain
α ∈ [0, 60]°×β ∈ [0, 90]° (Figure 5A), which corresponds to the
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feasibility range of the variables α and β (cf. Sect. 2), and
over the restricted domain α ∈ [24.0, 26.5]°× β ∈ [14.0, 15.5]°
(Figure 5B), which encompasses the local minimum of f (α, β)
observed in panel (Figure 5A). The quantity f in Figures 5A,B
has been normalized with respect to themaximumvalue observed
over the plotting interval. The results shown in the above figures
highlight that the objective function f exhibits a 0 point in corre-
spondence with the local search interval shown in Figure 5B, and
is uniformly equal to 0 in correspondence with β = 90° (degener-
ate configurations with the inner nodes collapsing into two single
nodes, cf., e.g., Figure 4), independently of the current value of α
(Figure 1A).

We are interested in the local minimum of f (α, β) that
corresponds to a non-degenerate prestressable configuration.
By sampling such a function over the domain α ∈ [24.0,
26.5]°×β ∈ [14.0, 15.5]°, we obtain a first estimate of such a local
minimum (0) point at α ≈ 26°, β ≈ 15°. Upon setting y= [α, β]T,
we refine such an initial guess y0 = [α0, β0]T by recourse to
Newton–Raphson iterations,

f(y0 + ∆y) ≈ f(y0) + ∇f(y0) · ∆y = 0, (12)

where ▽ f denotes the gradient of f with respect to y= [α, β]T.
We numerically estimate ▽ f by computing difference quotients
of f from y0 with increments equal to 10−7 of the amplitude of the
search interval. In addition, we iteratively solve equation (12) for
∆y, and recursively update the initial guess through y0 = y0 +∆y,
until we match the termination condition.

|∆y|∣∣y0∣∣ ≼ tol, (13)

where we set tol= 10−7. The use of the above iterative procedure
led us to detect a (non-degenerate) prestressable configuration of
System 1 (cf. Figure 1) at α= 25°47′ (0.450 rad) and β = 14°48′

(0.258 rad). The same procedure gives a (non-degenerate) pre-
stressable configuration of System 2 in Figure 1 at α= 36°13′

(0.632 rad) and β = 10°09′ (0.177 rad). Such configurations are
coincident with those found in Ref. Bieniek (2017b), via a different
approach, and are graphically illustrated in Figure 6.

4. ANALYTIC FORMULATION OF THE
SELF-EQUILIBRIUM PROBLEM

The numerical approach to the self-equilibrium problem of class
θ = 1 tensegrity prisms, which has been presented in the previous
section, can be easily generalized to arbitrary tensegrity systems
whose geometry is parametrized as a function of suitable aspect
variables.

We now aim at formulating an alternative analytic approach
to the same problem that makes use of the symmetry properties
of the system under consideration and examines the equilibrium
equations of the two nodes attached to an arbitrary bar. Let
us examine, e.g., the bar that connects the nodes 2 and 11 (cf.
Figure 1). The special symmetry of the structure illustrated in
Figure 1 leads us to recognize that its state of self-stress involves
equal force densities xt in all the top and base strings, and equal

FIGURE 6 | Freestanding configurations obtained for System 1 and System 2
in Figure 1. (A) System 1: standard configuration corresponding to
l= v= 100, c= 50. (B) System 2: expanded configuration corresponding to
l= v= c= 100.

force densities xb in all the bars. For the sake of example, let us
refer to System 1 assuming l= v= 100, c= 50. The three self-
equilibrium equations of node 2, i.e., the equilibrium equation
of node 2 in absence of an external force, involve the forces
densities x2–1, x2–3, x2–11, and x2–3. One can use such equations
to obtain x2–1, x2–3, and x2–3 as a function of x2–11 ≡ xb. On invok-
ing the above symmetry ansatz, one can next enforce the equa-
tion x2–1 = x2–3 ≡ xt, which leads us to the following relationship
between α and β:

1
6

(
−3cos

(α

2

)
cos(β) + 3

√
3cos(β)sin

(α

2

)
+sin(α)

(
2
√
3 +

3sin(β)√
1 + 2cos(α)

))
xb = 0, (14)

which must hold for any arbitrary value of xb.
For what concerns the self-equilibrium equations of node 11,

we observe that such equations involve only the three force den-
sities x2−11 ≡ xb, x7−11 ≡ xc, and x8−11 ≡ xc. It is immediate to
verify that such equations require that the resultant of the forces
acting in the strings 7–11 and 8–11 must be parallel to the bar
2–11. This implies in turn that the vector product of the string
vectors n7 − n11 and n8 − n11 must be orthogonal to the bar vector
n2 − n11, i.e., it results,

(n7 − n11) × (n8 − n11) · (n2 − n11) = 0. (15)

Making use of equations (1)–(4), we rewrite equation (15) as
follows:

− 31250√
3

cos(β)
(
cos(β)

(
2
√
3 + 6cosα − 9sin(β)

)
−8

√
3cos

(
Π
6

− α

2

)
sin(β)

)
= 0. (16)
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TABLE 1 | States of self-stress for System 1 and System 2.

System 1 System 2

Member x t x t

1–2 1.000 xt 100.0 xt 1.000 xt 100.0 xt
2–3 1.000 xt 100.0 xt 1.000 xt 100.0 xt
3–1 1.000 xt 100.0 xt 1.000 xt 100.0 xt
4–5 1.000 xt 100.0 xt 1.000 xt 100.0 xt
5–6 1.000 xt 100.0 xt 1.000 xt 100.0 xt
6–4 1.000 xt 100.0 xt 1.000 xt 100.0 xt
10–7 3.335 xt 166.8 xt 1.767 xt 176.721 xt
7–11 4.033 xt 201.6 xt 1.931 xt 193.114 xt
11–8 3.335 xt 166.8 xt 1.767 xt 176.721 xt
8–12 4.033 xt 201.6 xt 1.931 xt 193.114 xt
12–9 3.335 xt 166.8 xt 1.767 xt 176.721 xt
9–10 4.033 xt 201.6 xt 1.931 xt 193.114 xt
1–4 0.974 xt 97.4 xt 0.698 xt 69.836 xt
2–5 0.974 xt 97.4 xt 0.698 xt 69.836 xt
3–6 0.974 xt 97.4 xt 0.698 xt 69.836 xt
1–10 1.720 xt −203.527 xt 1.175 xt −193.846 xt
2–11 1.720 xt −203.527 xt 1.175 xt −193.846 xt
3–12 1.720 xt −203.527 xt 1.175 xt −193.846 xt
4–7 1.720 xt −203.527 xt 1.175 xt −193.846 xt
5–8 1.720 xt −203.527 xt 1.175 xt −193.846 xt
6–9 1.720 xt −203.527 xt 1.175 xt −193.846 xt

By grouping equation (14) for xb = 1 and equation (16), we
obtain a system of two equations for α and β, which can be solved
with the help of Mathematicar to get the same result obtained in
the previous section, i.e., α= 25°47′, β = 14°48′. It is also easy to
apply the analytic approach above to System 2 (l= v= c= 100)
obtaining α= 36°13′, β = 10°09′, as it was already found in Sect.
3. We close the present section by computing the states of self-
stress that characterize the freestanding configurations of Systems
1 and 2. The solution of equation (8) through Mathematicar in
correspondence to w= 0 and the values of α and β given above
leads us to the results shown in Table 1, where t=± xl denotes
the force acting in the member with length l (the+ sign holding
in the case of a string member, and the− sign holding in the case
of a bar). The results inTable 1 assume the force density in the top
and bottom strings xt as the independent prestress variable.

5. PRESTRESS STABILIZATION

The kinematic problem conjugate to equation (8) rules the exis-
tence of infinitesimal mechanisms of the structure from the free-
standing configuration, that is, displacement fields from such
a configuration that do not change the lengths of all members
(inextensional incremental displacements forming the nullspace
of the kinematic matrix). Such a problem is analytically formu-
lated in the Appendix in Supplementary Material, by making use
of the approach presented in Fraternali et al. (2015b). As shown in
Pellegrino and Calladine (1986), the number of such mechanisms
nm of a spatial lattice is related to the rank of the equilibrium
matrix r(A) through

nm = ndof − r(A), (17)

where ndof denotes the total number of degrees of freedom
of the structure. By making use of the kinematic problem

FIGURE 7 | Infinitesimal mechanisms from the freestanding configuration of
System 1.

presented in Appendix in Supplementary Material, we obtain
that the freestanding configurations shown in Figure 6 exhibit
nm = 10 infinitesimal (internal) mechanisms (excluding rigid
body motions), which are graphically illustrated in Figures 7
and 8.

Let’s now assume that all the members of the structure under
consideration behave as linear elastic springs governed by the
following constitutive equations:

ti = ki
(
li − l̄i

)
i = 1, . . . ,m, (18)

where l̄i denotes the rest length of the ith member in the stress-
free (or natural) configuration, and ki denotes the stiffness con-
stant characterizing the response of such a member. Our current
goal is to determine the tangent stiffness matrix of the systems in
Figure 6, and to study the possibility to stabilize the mechanisms
shown in Figures 7 and 8 through the application of nontrivial
states of prestress. We refer the reader to Guest (2006) and Frater-
nali et al. (2015b), for the notions of prestress-stabilty and super-
stability of tensegrity systems, and Skelton et al. (2015) and De
Tommasi et al. (2017) (with references therein) for the analysis
of the global stability of such systems. Following Guest (2006)
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FIGURE 8 | Infinitesimal mechanisms from the freestanding configuration of
System 2.

and Fraternali et al. (2015b), we start rewriting the equilibrium
problem equation (8) into the following scalar form:

rj =
m∑
i=1

ki
(
li − l̄i

) ∂li
∂ûj

− fj = 0, j = 1, . . . , ndof, (19)

where m= nb + ns; ndof = 3nn; li is the length of the generic
member in the freestanding configuration; ûj denotes the Carte-
sian component of the global, nodal displacement vector from
the freestanding configuration, which is associated with the
jth degree of freedom (dof); the quantities ∂li

∂ûj give the cosine
directors of the members’ axes; and fj denotes the nodal
force component associated with the jth dof (Fraternali et al.,
2015b). The generic (j, k) entry of the tangent stiffness matrix
KT ∈ Rndof×ndof in the freestanding configuration is given by
Fraternali et al. (2015b),

KTjk =
∂rj
∂ûk

, j, k = 1, . . . , ndof. (20)

Such a matrix can be decomposed as follows:

KT = KM + KG , (21)

whereKM is thematerial stiffness matrix of lattice, which depends
on the axial stiffness and the cosine directors of the members, and
is defined through (Fraternali et al., 2015b)

KMjk =
m∑
i=1

ki
∂li
∂ûj

∂li
∂ûk

, j, k = 1, . . . , ndof, (22)

while KG is the geometric matrix that depends on the prestress
forces ti acting in all members in the freestanding configuration,

FIGURE 9 | One-dimensional tensegrity metamaterial alternating lumped
masses with regular and expanded class θ = 1 tensegrity prisms.

and the changes in the cosine directors of themembers’ axes due to
an arbitrary incremental deformation of the structure from such
a configuration. The (j, k) entry of KG is given by Fraternali et al.
(2015b).

KGjk =
m∑
i=1

ti
∂2li

∂ûj∂ûk
j, k = 1, . . . , ndof. (23)

According to the nomenclature given in Guest (2006), Schenk
et al. (2007), Micheletti (2013) and Fraternali et al. (2015b), the
structure is said to be prestress-stable if the geometric stiffness KG
matrix is positive-definite in correspondence with any nontrivial
mechanism ûm, i.e., it results,

KG ûm · ûm > 0, (24)

for any ûm ̸= 0 that represents the vector of nodal displacements
ûj associated with an infinitesimal mechanism of the structure.
In the Appendix in Supplementary Material, we give the analytic
expressions of ûm (m= 1, . . ., 10), KM and KG for the analyzed
systems, which are rather cumbersome. It is easily verified that
equation (24) holds true in correspondence to each of the mech-
anisms illustrated in Figures 7 and 8, which implies that the
freestanding configurations of the systems under examination are
prestress-stable, since the prestress forces given in Table 1 act
against any infinitesimal mechanism of the structure from such
configurations (assuming xt > 0, see Sects. Appendix SA3 and SA4
in Supplementary Material).

6. CONCLUDING REMARKS

We have formulated numerical and analytical approaches to the
search for freestanding configurations of class θ = 1 tensegrity
prisms, by parameterizing the geometry of such systems in terms
of two aspect angles. The numerical approach given in Sect. 3
can be easily generalized to arbitrary tensegrity systems whose
geometry is described through suitable design variables, since it
is based on the study of the 0s of the Gramian of the static matrix
of the structure, as a function of the chosen design parameters.

The results obtained in Sects. 4 and 5 lead us to conclude that
the freestanding configurations of class θ = 1 tensegrity prisms
have static indeterminacy equal to 1 (see Sect. 4), and kinematic
indeterminacy equal to 10 (Sect. 5). They can be effectively stabi-
lized through the application of pre-tensioning forces to the string
members, which act against the infinitesimalmechanisms allowed
by such structures (Sect. 5).
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The presence of a high number of infinitesimal mecha-
nisms from the freestanding configurations suggests that the
examined systems can be usefully employed as novel units
of mechanical metamaterials, which exhibit geometrically non-
linear response, support solitary wave dynamics, and offer
a valid alternative to the standard tensegrity prisms stud-
ied in Fraternali et al. (2012, 2014) (see Figure 9 for a
one-dimensional chain alternating lumped masses and class
θ = 1 tensegrity prisms). The remarkable influence of infinites-
imal mechanisms on the geometrically nonlinear constitu-
tive response and wave dynamics of tensegrity metamateri-
als has been highlighted in Fraternali et al. (2012, 2014).
Analytic, numerical, and experimental studies on the imple-
mentation of the units studied in the present work within
novel tensegrity metamaterials, including, e.g., impact pro-
tection gear (Fraternali et al., 2014) and vibration isolation
devices (Fraternali and Amendola, 2017), are addressed to
future work.
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